The time allocated for each paper presentation will be 20 minutes (15 minutes for the presentation itself and minutes for discussion).

Day 1 (7th, Wednesday)

11:30-13:00Lunch
13:00-13:10Opening
13:10-14:10Keynote 1: Katharina Morik
14:10-15:10Session 1: XAI I
14:10-14:30Mathieu Guilbert, Christel Vrain, Thi-Bich-Hanh DaoA Constrained Declarative Based Approach for Explainable Clustering
14:30-14:50Dongwhi Kim, Nuno MonizRelevance-aware Algorithmic Recourse
14:50-15:10Genghua Dong, Henrik Bostrom, Michalis Vazirgiannis, Roman BressonObtaining Example-Based Explanations from Deep Neural Networks
15:10-15:30Break
15:30-17:30Session 2: Applications of Data Science I
15:30-15:50Bastien Mollet, Paul Ahavi, Antoine Cornuéjols, Jean-Loup Faulon, Evelyne Lutton, Alberto TondaEstimating the Learning Capacity of Bacterial Metabolic Networks
15:50-16:10Ariel Basso Madjoukeng, Bélise Kenmogne Edith, Pierre Poitier, Benoît Frénay, Jérôme FinkLocal-global Data Augmentation for Contrastive Learning in Static Sign Language Recognition
16:10-16:30Dorra Sassi, Constance Thierry, David Gross-AmblardCredal Knowledge Tracing for Imprecise and Uncertain MCQ
16:30-16:50Anne Rother, Till Ittermann, Myra SpiliopoulouSemi-supervised learning with pairwise instance comparisons for medical instance classification
16:50-17:10Daniel Persson, William Wahlberg, Anna Vettoruzzo, Slawomir NowaczykBridging Spatial and Temporal Contexts: Sparse Transfer Learning
17:10-17:30Stijn Rotman, Gianluca Guglielmo, Boris Cule, Michal KlincewiczExpertise Prediction of Tetris Players Using Eye Tracking Information
17:30-18:30Aperitif on Terrace
18:30-Rhine Terrace Dinner & Grill

Day 2 (8th, Thursday)

09:00-10:00Keynote II: Jessica Lin
10:00-11:00Session 3: XAI II
10:00-10:20Benoît Ronval, Pierre Dupont, Siegfried NijssenDetection of Large Language Model Contamination with Tabular Data
10:20-10:40Rikard Vinge, Stefan Byttner, Jens LundströmExpanding Polynomial Kernels for Global and Local Explanations of Support Vector Machines
10:40-11:00Rik Adriaensen, Jaron MaeneExtracting Moore Machines from Transformers using Queries and Counterexamples
11:00-11:30Break
11:30-12:10Session 4: Applications of Data Science II
11:30-11:50Bouke Scheltinga, Jasper Reenalda, Jaap Buurke, Joost KokDevelopment of Models to Quantify Training Load in Outdoor Running using Inertial Sensors
11:50-12:10Quentin Victor; Ianis Clavier, Hugo Boisaubert, Fabien Picarougne, Corinne Lejus-Bourdeau, Christine SinoquetTwo-in-one Models for Event Prediction and Time Series Forecasting. Comparison of Four Deep Learning Approaches to Simulate a Digital Patient under Anesthesia
12:10-12:30PhD Poster Spotlights
12:30-13:00PhD Mentorship
12:30-14:00Flying Lunch & Poster Session
14:00-15:40Session 5: Foundations of Data Science
14:00-14:20Loren Nuyts, Jesse DavisThe When and How of Target Variable Transformations
14:20-14:40Sietse Schröder, Mitra Baratchi, Jan Van RijnOverfitting in Combined Algorithm Selection and Hyperparameter Optimization
14:40-15:00Mateusz Żarski, Slawomir NowaczykBalancing performance and scalability of demand forecasting ML models
15:00-15:10Soroush Ghandi, Benjamin Quost, Cassio de CamposImposing Constraints in Probabilistic Circuits via Gradient Optimization
15:10-15:40Lise Kastner, Cuissart Bertrand, Jean-Luc LamotteBOWSA: a contribution of sensitivity analysis to improve Bayesian optimization for parameter tuning
15:40-16:10Break & Poster Session
16:10-17:30Session 6: Temporal Data Mining
16:10-16:30Nuwan Gunasekara, Slawomir Nowaczyk, Sepideh PashamiPragmatic Paradigm for Multi-stream Regression
16:30-16:50Miro Miranda, Francisco Mena, Andreas DengelAn Analysis of Temporal Dropout in Earth Observation Time Series for Regression Tasks
16:50-17:10Ricardo Inácio, Vitor Cerqueira , Marília Barandas, Carlos SoaresMeta-learning and Data Augmentation for Stress Testing Forecasting Models
17:10-17:30Julian Vexler, Björn Vieten, Martin Nelke, Stefan KramerIntegrating Inverse and Forward Modeling for Sparse Temporal Data from Sensor Networks
18:30-23:00Excursion to Mainau and Banquet Dinner

Day 3 (9th, Friday)

09:00-10:00Session 7: Representation Learning
09:00-09:20Maciej Makowski, Brandon Gower-Winter, Georg KremplPerformative Drift Resistant Classification using Generative Domain Adversarial Networks
09:20-09:40Maedeh Nasri, Mitra Baratchi, Alexander Koutamanis, Carolien RieffeSiamCircle: Trajectory Representation Learning in Free Settings
09:40-10:00Canberk Ozen, Slawomir Nowaczyk, Prayag Tiwari, Sepideh PashamiAssessing the Impact of Graph Structure Learning in Graph Deviation Networks
10:00-11:00IDA from 1995 to today: A 30-Year Retrospective
11:00-11:30Break
11:30-12:50Session 8: Data Mining
11:30-11:50Tsuyoshi Yamashita, Kunitake KanekoBalancing global importance and source proximity for personalized recommendations using random walk length
11:50-12:10G. Charbel N. Kindji, Elisa Fromont, Lina Maria Rojas-Barahona, Tanguy UrvoySynthetic Tabular Data Detection In the Wild
12:10-12:30Carl Vico Heinrich, Tommie Lombarts, Jules Mallens, Luc Tortike, David Wolf, Wouter DuivesteijnLocal Subgroup Discovery on Attributed Network Graphs
12:30-12:50Marco Loog, Jesse Krijthe, Manuele BicegoCounterintuitive Behavior of Clustering Quality: Findings for K-Means on Synthetic and Real Data
12:50-14:00Lunch
14:00-15:40Session 9: Natural Language Processing
14:00-14:20Johannes SchneiderImproving Next Tokens via Second-to-Last Predictions with Generate and Refine
14:20-14:40Clémence Sebe, Sarah Cohen-Boulakia, Olivier Ferret, Aurélie NévéolExtracting information in a low-resource setting: case study on bioinformatics workflows
14:40-15:00Vu Minh Hoang Dang, Rakesh VermaVocabulary Quality in NLP Datasets: An Autoencoder-Based Framework Across Domains and Languages
15:00-15:20Noor Khalal, Abdallah Djamai, Imed Keraghel, Mohamed NadifImbalanced Data Clustering via Targeted Data Augmentation Using GMM and LLM
15:20-15:40Bojan Cestnik, Andrej Kastrin, Boshko Koloski, Nada LavračMake Literature-Based Discovery Great Again through Reproducible Pipelines
15:40-16:00Closing Remarks
16:00-Farewell Drinks