Here is the list of this year’s accepted papers:
- Credal Knowledge Tracing for Imprecise and Uncertain MCQ
- Dorra Sassi, Constance Thierry, David Gross-Amblard
- Paving the Way for the Prevention of Injuries in Outdoor Running
- Bouke Scheltinga, Jasper Reenalda, Jaap Buurke, Joost Kok
- Estimating the Learning Capacity of Bacterial Metabolic Networks
- Bastien Mollet, Paul Ahavi, Antoine Cornuéjols, Jean-Loup Faulon, Evelyne Lutton, Alberto Tonda
- Semi-supervised learning with pairwise instance comparisons for medical instance classification
- Anne Rother, Till Ittermann, Myra Spiliopoulou
- Local-global Data Augmentation for Contrastive Learning in Static Sign Language Recognition
- Ariel Basso Madjoukeng, Bélise Kenmogne Edith, Pierre Poitier, Benoît Frénay, Jérôme Fink
- SiamCircle: Trajectory Representation Learning in Free Settings
- Maedeh Nasri, Mitra Baratchi, Alexander Koutamanis, Carolien Rieffe
- Synthetic Tabular Data Detection In the Wild
- G. Charbel N. Kindji, Elisa Fromont, Lina Maria Rojas-Barahona, Tanguy Urvoy
- Assessing the Impact of Graph Structure Learning in Graph Deviation Networks
- Canberk Ozen, Slawomir Nowaczyk, Prayag Tiwari, Sepideh Pashami
- The When and How of Target Variable Transformations
- Loren Nuyts, Jesse Davis
- Transfer learning for balancing performance and scalability of ML models
- Mateusz Żarski, Slawomir Nowaczyk
- Balancing global importance and source proximity for personalized recommendations using random walk length
- Tsuyoshi Yamashita, Kunitake Kaneko
- Counterintuitive Behavior of Clustering Quality: Findings for K-Means on Synthetic and Real Data
- Marco Loog, Jesse Krijthe, Manuele Bicego
- BOWSA: a contribution of sensitivity analysis to improve Bayesian optimization for parameter tuning
- Lise Kastner, Bertrand Cuissart, Jean-Luc Lamotte
- Overfitting in Combined Algorithm Selection and Hyperparameter Optimization
- Sietse Schröder, Mitra Baratchi, Jan Van Rijn
- Local Subgroup Discovery on Attributed Network Graphs
- Carl Vico Heinrich, Tommie Lombarts, Jules Mallens, Luc Tortike, David Wolf, Wouter Duivesteijn
- Imposing Constraints in Probabilistic Circuits via Gradient Optimization
- Soroush Ghandi, Benjamin Quost, Cassio de Campos
- Improving Next Tokens via Second-Last Predictions with ‘Generate and Refine’
- Johannes Schneider
- Detection of Large Language Model Contamination with Tabular Data
- Benoît Ronval, Pierre Dupont, Siegfried Nijssen
- Data Augmentation involving GMM and LLM
- Noor Khalal, Abdallah Djamai, Imed Keraghel, Mohamed Nadif
- Make Literature-Based Discovery Great Again through Reproducible Pipelines
- Bojan Cestnik, Andrej Kastrin, Boshko Koloski, Nada Lavrač
- Extracting information in a low-resource setting: case study on bioinformatics workflows
- Clémence Sebe, Sarah Cohen-Boulakia, Olivier Ferret, Aurélie Névéol
- Vocabulary Quality in NLP Datasets: An Autoencoder-Based Framework Across Domains and Languages
- Vu Minh Hoang Dang, Rakesh Verma
- Expertise Prediction of Tetris Players Using Eye Tracking Information
- Stijn Rotman, Gianluca Guglielmo, Boris Cule, Michal Klincewicz
- Integrating Inverse and Forward Modeling for Sparse Temporal Data from Sensor Networks
- Julian Vexler, Björn Vieten, Martin Nelke, Stefan Kramer
- Bridging Spatial and Temporal Contexts: Sparse Transfer Learning
- Daniel Persson, William Wahlberg, Anna Vettoruzzo, Slawomir Nowaczyk
- Meta-learning and Data Augmentation for Stress Testing Forecasting Models
- Ricardo Inácio, Vitor Cerqueira, Marília Barandas, Carlos Soares
- Pragmatic Paradigm for Multi-stream Regression
- Nuwan Gunasekara, Slawomir Nowaczyk, Sepideh Pashami
- Two-in-one Models for Event Prediction and Time Series Forecasting. Comparison of Four Deep Learning Approaches to Simulate a Digital Patient under Anesthesia.
- Quentin Victor, Ianis Clavier, Hugo Boisaubert, Fabien Picarougne, Corinne Lejus-Bourdeau, Christine Sinoquet
- An Analysis of Temporal Dropout in Earth Observation Time Series for Regression Tasks
- Miro Miranda, Francisco Mena, Andreas Dengel
- Performative Drift Resistant Classification using Generative Domain Adversarial Networks
- Maciej Makowski, Brandon Gower-Winter, Georg Krempl
- Extracting Moore Machines from Transformers using Queries and Counterexamples
- Rik Adriaensen, Jaron Maene
- Obtaining Example-Based Explanations from Deep Neural Networks
- Genghua Dong, Henrik Bostrom, Michalis Vazirgiannis, Roman Bresson
- Relevance-aware Algorithmic Recourse
- Dongwhi Kim, Nuno Moniz
- Expanding Polynomial Kernels for Global and Local Explanations of Support Vector Machines
- Rikard Vinge, Stefan Byttner, Jens Lundström
- A Constrained Declarative Based Approach for Explainable Clustering
- Mathieu Guilbert, Christel Vrain, Thi-Bich-Hanh Dao