Here is the list of this year’s accepted papers:
- Credal Knowledge Tracing for Imprecise and Uncertain MCQ
- Dorra Sassi, Constance Thierry, David Gross-Amblard
 
 - Paving the Way for the Prevention of Injuries in Outdoor Running
- Bouke Scheltinga, Jasper Reenalda, Jaap Buurke, Joost Kok
 
 - Estimating the Learning Capacity of Bacterial Metabolic Networks
- Bastien Mollet, Paul Ahavi, Antoine Cornuéjols, Jean-Loup Faulon, Evelyne Lutton, Alberto Tonda
 
 - Semi-supervised learning with pairwise instance comparisons for medical instance classification
- Anne Rother, Till Ittermann, Myra Spiliopoulou
 
 - Local-global Data Augmentation for Contrastive Learning in Static Sign Language Recognition
- Ariel Basso Madjoukeng, Bélise Kenmogne Edith, Pierre Poitier, Benoît Frénay, Jérôme Fink
 
 - SiamCircle: Trajectory Representation Learning in Free Settings
- Maedeh Nasri, Mitra Baratchi, Alexander Koutamanis, Carolien Rieffe
 
 - Synthetic Tabular Data Detection In the Wild
- G. Charbel N. Kindji, Elisa Fromont, Lina Maria Rojas-Barahona, Tanguy Urvoy
 
 - Assessing the Impact of Graph Structure Learning in Graph Deviation Networks
- Canberk Ozen, Slawomir Nowaczyk, Prayag Tiwari, Sepideh Pashami
 
 - The When and How of Target Variable Transformations
- Loren Nuyts, Jesse Davis
 
 - Transfer learning for balancing performance and scalability of ML models
- Mateusz Żarski, Slawomir Nowaczyk
 
 - Balancing global importance and source proximity for personalized recommendations using random walk length
- Tsuyoshi Yamashita, Kunitake Kaneko
 
 - Counterintuitive Behavior of Clustering Quality: Findings for K-Means on Synthetic and Real Data
- Marco Loog, Jesse Krijthe, Manuele Bicego
 
 - BOWSA: a contribution of sensitivity analysis to improve Bayesian optimization for parameter tuning
- Lise Kastner, Bertrand Cuissart, Jean-Luc Lamotte
 
 - Overfitting in Combined Algorithm Selection and Hyperparameter Optimization
- Sietse Schröder, Mitra Baratchi, Jan Van Rijn
 
 - Local Subgroup Discovery on Attributed Network Graphs
- Carl Vico Heinrich, Tommie Lombarts, Jules Mallens, Luc Tortike, David Wolf, Wouter Duivesteijn
 
 - Imposing Constraints in Probabilistic Circuits via Gradient Optimization
- Soroush Ghandi, Benjamin Quost, Cassio de Campos
 
 - Improving Next Tokens via Second-Last Predictions with ‘Generate and Refine’
- Johannes Schneider
 
 - Detection of Large Language Model Contamination with Tabular Data
- Benoît Ronval, Pierre Dupont, Siegfried Nijssen
 
 - Data Augmentation involving GMM and LLM
- Noor Khalal, Abdallah Djamai, Imed Keraghel, Mohamed Nadif
 
 - Make Literature-Based Discovery Great Again through Reproducible Pipelines
- Bojan Cestnik, Andrej Kastrin, Boshko Koloski, Nada Lavrač
 
 - Extracting information in a low-resource setting: case study on bioinformatics workflows
- Clémence Sebe, Sarah Cohen-Boulakia, Olivier Ferret, Aurélie Névéol
 
 - Vocabulary Quality in NLP Datasets: An Autoencoder-Based Framework Across Domains and Languages
- Vu Minh Hoang Dang, Rakesh Verma
 
 - Expertise Prediction of Tetris Players Using Eye Tracking Information
- Stijn Rotman, Gianluca Guglielmo, Boris Cule, Michal Klincewicz
 
 - Integrating Inverse and Forward Modeling for Sparse Temporal Data from Sensor Networks
- Julian Vexler, Björn Vieten, Martin Nelke, Stefan Kramer
 
 - Bridging Spatial and Temporal Contexts: Sparse Transfer Learning
- Daniel Persson, William Wahlberg, Anna Vettoruzzo, Slawomir Nowaczyk
 
 - Meta-learning and Data Augmentation for Stress Testing Forecasting Models
- Ricardo Inácio, Vitor Cerqueira, Marília Barandas, Carlos Soares
 
 - Pragmatic Paradigm for Multi-stream Regression
- Nuwan Gunasekara, Slawomir Nowaczyk, Sepideh Pashami
 
 - Two-in-one Models for Event Prediction and Time Series Forecasting. Comparison of Four Deep Learning Approaches to Simulate a Digital Patient under Anesthesia.
- Quentin Victor, Ianis Clavier, Hugo Boisaubert, Fabien Picarougne, Corinne Lejus-Bourdeau, Christine Sinoquet
 
 - An Analysis of Temporal Dropout in Earth Observation Time Series for Regression Tasks
- Miro Miranda, Francisco Mena, Andreas Dengel
 
 - Performative Drift Resistant Classification using Generative Domain Adversarial Networks
- Maciej Makowski, Brandon Gower-Winter, Georg Krempl
 
 - Extracting Moore Machines from Transformers using Queries and Counterexamples
- Rik Adriaensen, Jaron Maene
 
 - Obtaining Example-Based Explanations from Deep Neural Networks
- Genghua Dong, Henrik Bostrom, Michalis Vazirgiannis, Roman Bresson
 
 - Relevance-aware Algorithmic Recourse
- Dongwhi Kim, Nuno Moniz
 
 - Expanding Polynomial Kernels for Global and Local Explanations of Support Vector Machines
- Rikard Vinge, Stefan Byttner, Jens Lundström
 
 - A Constrained Declarative Based Approach for Explainable Clustering
- Mathieu Guilbert, Christel Vrain, Thi-Bich-Hanh Dao
 
 
